Satellite cell regulation of muscle mass is altered at old age.
نویسندگان
چکیده
Muscle mass is decreased with advancing age, likely due to altered regulation of muscle fiber size. This study was designed to investigate cellular mechanisms contributing to this process. Analysis of male Fischer 344 X Brown Norway rats at 6, 20, and 32 mo of age demonstrated that, even though significant atrophy had occurred in soleus muscle by old age, myofiber nuclear number did not change, resulting in a decreased myonuclear domain. Also, the number of centrally located nuclei was significantly elevated in soleus muscle of 32-mo-old rats, correlating with an increase in gene expression of MyoD and myogenin. Whereas total 5'-bromo-2'deoxyuridine (BrdU)-positive nuclei were decreased at older ages, BrdU-positive myofiber nuclei were increased. These results suggest that, with age, loss of muscle mass is accompanied by increased myofiber nuclear density that involves fusion of proliferative satellite cells, resembling ongoing regeneration. Interestingly, centrally located myofiber nuclei were not BrdU labeled. Rats were subjected to hindlimb suspension (HS) for 7 or 14 days and intermittent reloading during HS for 1 h each day (IR) to investigate how aging affects the response of soleus muscle to disuse and an atrophy-reducing intervention. After 14 days of HS, soleus muscle size was decreased to a similar extent at all three ages. However, myofiber nuclear number and the total number of BrdU-positive nuclei decreased with HS only in the young rats. IR was associated with an attenuation of atrophy in soleus muscles of 6- and 20- but not 32-mo-old rats. Furthermore, IR was associated with an increase in BrdU-positive myofiber nuclei only in young rats. These data indicate that altered satellite cell function with age contributes to the impaired response of soleus muscle to an intervention that attenuates muscle atrophy in young animals during imposed disuse.
منابع مشابه
Age-related skeletal muscle dysfunction: causes and mechanisms.
Age-related muscle weakening may ultimately result in the transition from an independent to a dependent life-style. The decline in muscle strength is larger than expected from the loss of muscle mass. Single fibre studies and in vitro motility assays indicate that part of the muscle dysfunction is due to modifications of the myosin molecule. A lower rate of protein turnover may increase the cha...
متن کاملAge-related changes in speed and mechanism of adult skeletal muscle stem cell migration.
Skeletal muscle undergoes a progressive age-related loss in mass and function. Preservation of muscle mass depends in part on satellite cells, the resident stem cells of skeletal muscle. Reduced satellite cell function may contribute to the age-associated decrease in muscle mass. Here, we focused on characterizing the effect of age on satellite cell migration. We report that aged satellite cell...
متن کاملHIGHLIGHTED TOPIC Regulation of Protein Metabolism in Exercise and Recovery Expression of growth-related genes in young and older human skeletal muscle following an acute stimulation of protein synthesis
Drummond MJ, Miyazaki M, Dreyer HC, Pennings B, Dhanani S, Volpi E, Esser KA, Rasmussen BB. Expression of growth-related genes in young and older human skeletal muscle following an acute stimulation of protein synthesis. J Appl Physiol 106: 1403–1411, 2009. First published September 11, 2008; doi:10.1152/japplphysiol.90842.2008.— Muscle growth is associated with an activation of the mTOR signal...
متن کاملIGF-I restores satellite cell proliferative potential in immobilized old skeletal muscle.
One of the key factors responsible for the age-associated reduction in muscle mass may be that satellite cell proliferation potential (number of doublings contained within each cell) could become rate limiting to old muscle regrowth. No studies have tested whether repeated cycles of atrophy-regrowth in aged animals deplete the remaining capacity of satellite cells to replicate or what measures ...
متن کاملExpression of growth-related genes in young and older human skeletal muscle following an acute stimulation of protein synthesis.
Muscle growth is associated with an activation of the mTOR signaling pathway and satellite cell regulators. The purpose of this study was to determine whether 17 selected genes associated with mTOR/muscle protein synthesis and the satellite cells/myogenic program are differentially expressed in young and older human skeletal muscle at rest and in response to a potent anabolic stimulus [resistan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of applied physiology
دوره 97 3 شماره
صفحات -
تاریخ انتشار 2004